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We consider the effects of strong critical-layer nonlinearity on the spatially growing 
instabilities of a shear layer between two parallel streams. A composite expansion 
technique is used to obtain a single formula that accounts for both shear-layer 
spreading and nonlinear critical-layer effects. Nonlinearity causes the instability to 
saturate well upstream of the linear neutral stability point. It also produces vorticity 
roll-up that cannot be predicted by linear theory. 

1. Introduction 
Numerous experiments involve external excitation of unsteady flows on unstable 

shear layers between two parallel streams. The resulting motion usually has 
harmonic time dependence, exhibits spatial growth in the downstream direction, and 
is well described - at  least in its early stages - by linear, non-parallel-flow stability 
theory. This suggests that the initial instability-wave growth will eventually reverse 
(i.e. the linear wave will eventually decay) because of the shear-layer growth 
resulting from viscous diffusion effects. But experimentally observed shear layers 
usually ‘roll-up ’ in the vicinity of the linear neutral stability point - suggesting that 
nonlinear effects become important there. 

It should be possible to account for these effects by means of a local nonlinear 
solution that is valid somewhere in the vicinity of the linear neutral stability point. 
However, this solution should also be an appropriate continuation of the linear 
(weakly non-parallel) instability-wave solution into the downstream nonlinear 
region; which means that the two solutions should be required to match (in the 
matched asymptotic expansion sense) in some mutual overlap domain. 

There are roughly two (not entirely independent) types of nonlinear theories. One 
of these - the so-called Stuart (1960) - Watson (1960) - Landau theory - is basically 
a multiple scales method that incorporates nonlinear effects into the lowest-order 
solution in order to eliminate secular terms in the higher-order solutions. These terms 
only appear when the solution remains at  its neutral stability point over a sufficiently 
large streamwise distance. But this will only occur when the local Reynolds number 
is large enough to ensure that the mean flow remains parallel over this distance. The 
Reynolds number must also be small enough so that other stronger types of 
nonlinearity - to be discussed below - do not occur first. Huerre (1987) showed that 
it is impossible to simultaneously meet these requirements without introducing some 
type of artificial body force - which would defeat the whole purpose of the present 
analysis. 
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We are, therefore, forced to consider a stronger type of nonlinearity, namely the 
nonlinear critical-layer type. Nonlinear critical layers have been reviewed, in general, 
by Maslowe (1986); and by Stewartson (1981) for Rossby waves in particular. The 
reader is referred to these articles for details. 

The early critical-layer analyses of Benney & Bergeron (1969), Davis (1969), and 
Haberman (1972) considered only the so-called equilibrium critical layers, in which 
the temporal development (or non-equilibrium) term does not explicitly appear in the 
critical-layer vorticity equation. Stewartson (1978), Warn & Warn (1978), Hickernell 
(1984), and others considered non-equilibrium or time-dependent critical layers for 
temporally growing (i.e. spatially periodic) Rossby waves. 

Huerre & Scott’s (1980) analysis -which is somewhat similar to the present 
analysis - shows that it is impossible to construct nonlinear equilibrium critical-layer 
solutions that match to a linear solution unless some sort of artificial body force is 
applied to the flow. This leaves us with the nonlinear, non-equilibrium-type critical 
layers considered by Stewartson (1978) and Warn & Warn (1978). 

Robinson (1974) applied inviscid non-equilibrium, nonlinear, critical-layer theory 
to free-shear flows, but only considered the case where the deviation of the suitably 
normalized frequency from its neutral value was of the same order as the instability- 
wave amplitude E and, therefore, could not (as will become clear below) match his 
solution onto the strictly linear instability-wave solution, which applies further 
upstream. Here we consider the case where the deviation of the local thickness 
Strouhal number (or normalized frequency) from the neutral value is O(ef) and 
therefore large compared to the wave amplitude 6.  The resulting lowest-order 
critical-layer vorticity equation contains both nonlinear and non-equilibrium terms 
and its solution can therefore be matched on to the upstream linear instability 
wave. 

The critical layer develops gradually in space and has an O(&) effect on the growth 
rate of the linear instability wave (that continues to describe the dominant unsteady 
motion outside the critical layer), causing it to saturate a t  normalized frequencies 
well below the neutral frequency predicted by linear theory. It is worth noting that 
the Stuart-Watson (1960)-type interaction has a much smaller, O(e2), effect on the 
growth rate. An even more important result is that the predicted roll-up of the 
constant-vorticity lines is now substantially different from that predicted by linear 
theory which, in any case, should not be used for this purpose since the slope of the 
vorticity contours is assumed to be small there. 

Since even the maximum linear growth rates are usually quite small - of the order 
of 0.1 or 0.2, depending on the normalization - we expect the critical-layer behaviour 
to extend relatively far upstream from the linear neutral point (perhaps even fairly 
close to the point where the local Strouhal number is half the neutral value, i.e. where 
the linear growth is maximum). This is shown very nicely in Michalke’s (1964) 
figure 8 which is for temporally growing modes, but can be interpreted as a plot of 
the transverse vorticity distribution a t  various streamwise locations near the neutral 
stability point. 

The problem is formulated in $ 2 ,  where we show how the nonlinear critical-layer 
solution gradually evolves from the strictly linear, finite-growth-rate solution and 
that there exists an overlap domain where these two solutions can be matched. We 
calculate.the flow in the near-neutral region just outside the critical layer in $3  by 
using an analysis that is in some respects similar to the one used by Huerre (1980, 
1987) for a related problem involving a predominantly viscous critical layer. 

We show that the growth of the externally imposed instability wave is ultimately 



Nonlinear roll-up of externally excited free shear layers 483 

determined by the flow in the critical layer, which is analysed in $4. The vorticity 
transport, which includes lateral convection by the near-neutral instability mode, is 
governed by a linear first-order partial differential equation in this region but with 
one of its coefficients related to the yet undetermined amplitude of that instability 
mode. That amplitude is ultimately determined by matching the critical-layer 
solution to the outer near-neutral linear solution. This makes the overall problem 
nonlinear (and interactive) and it has to be solved numerically. The procedure, which 
involves a spectral decomposition of the solution, is described in $5. 

Section 6 is concerned with the mean flow alteration produced by the instability 
wave. We show that the resulting mean flow change is O(e2) and is reflected in a 
corresponding change in the momentum thickness to that order. We derive a formula 
that relates this quantity to the mean-square instability-wave amplitude. 

Overall instability-wave growth depends on both mean flow divergence and 
nonlinear effects in most of the relevant experiments. We therefore in $ 7 combine the 
present nonlinear solution with a slowly varying ‘outer’ solution to obtain a 
uniformly valid ‘composite expansion’ (Van Dyke 1975) that accounts for both 
effects in a single formula. It is our view that this approach is the only completely 
rational way to obtain such a formula. 

The numerical results are discussed in $8. They show that the instability-wave 
growth rate can vanish well upstream of the linear neutral stability point but the 
final instability-wave amplitude is approached rather gradually (on the streamwise 
lengthscale of the inner region) through a successive series of decreasing-amplitude 
oscillations about the equilibrium position. The first few oscillations can be of rather 
large amplitude compared with the maximum instability-wave amplitude when the 
velocity change across the shear layer is small relative to the average velocity. 

Speculations about the ultimate state of the critical layer are made with the aid 
of the non-interactive analytical solution of Stewartson (1978) and Warn & Warn 
(1978). Higher harmonics are generated in the outer flow at O(d),  but only the first 
harmonic has significant amplitude there. Our predicted Reynolds-stress-induced 
shear-layer spread is shown to be in qualitative agreement with the experimental 
observations of Ho & Huang (1982). The numerical solution predicts vorticity roll- 
up that closely resembles experimental observation, with the formation of a 
particularly strong braid in the case where one of the streams has zero velocity. 

2. Formulation 
We are concerned with the two-dimensional flow in a nearly inviscid and 

incompressible shear layer between two parallel streams with nominally uniform 
velocities U ,  > U,. The motion is governed by the vorticity equation 

where 

is the Laplacian, w = VZ$ 

is minus the dimensionless vorticity, 
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is the Jacobian with respect to ( and y of w and the stream function 11.. The latter is 
assumed to be non-dimensionalized by AS,,, where 

is a measure of the velocity difference across the shear layer and 6, denotes its 
characteristic thickness (to be specified more precisely below). We suppose that the 
time t has been normalized by S o / A  and that the streamwise (in the U,, U ,  direction) 
and transverse coordinates x and y, respectively, have been normalized by So. 
Finally 

- 

( = x-Ut (2.5) 

denotes the streamwise coordinate in a reference frame moving with the normalized 
average velocity 

(2.7) R=-,  AS0 of the two streams, and 
U 

where u is the kinematic viscosity, is a characteristic mean flow Reynolds 
number. 

We require that the amplitude B of the unsteady motion be small enough and the 
mean flow Reynolds number R be large enough to produce a nearly parallel mean 
flow, in which case the shear-layer width will initially increase only over the long 
(viscous) lengthscale 

X 
x =-. 
2 - R  

The upstream unsteady motion is assumed to be small enough to  be treated as a 
linear perturbation of this mean flow and we suppose that it consists of a time- 
harmonic spatially growing instability wave with Strouhal number S (based on A and 
So). The associated unsteady flow will then be nearly inviscid with the dominant 
effect of viscosity being to change the local growth rate of the instability wave by 
causing the mean shear layer to  thicken. 

The unsteady flow can then be calculated by using weakly non-parallel stability 
theory, which amounts to using the multiple-scales method to correct the locally 
parallel flow approximation (i.e. the solution t o  Rayleigh’s equation) to  obtain a 
result that is uniformly valid over the long ‘outer ’ lengthscale x2 = O( l), as was done, 
for example, by Crighton & Gaster (1976). The instability wave will then grow in 
amplitude with decreasing growth rate until it approaches neutral stability provided, 
of course, that its amplitude remains sufficiently small compared with the mean flow 
velocity (in the 6-coordinate system) over most of the shear layer - as we now assume 
to be the case. 

The unsteady instability-wave vorticity will then, as pointed out by Robinson 
(1974), develop a non-uniformity in the vicinity of the mean flow inflexion point. 
This non-uniformity does not affect the transverse mode shape and streamwise 
wavenumber of the linear instability wave -though, as shown below, i t  ultimately 
affects its growth rate and the higher-order terms in the asymptotic expansion which 
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it generates. Thus re-expanding the linear unsteady vorticity in terms of the small? 
‘parameter ’ 

where 8, denotes the neutral Strouhal number (as predicted by linear stability 
theory) and S(x2) denotes the local shear-layer thickness, will not yield a correct 
result in the region of non-uniformity, unless the y-coordinate is appropriately scaled 
with u(x,) before this re-expansion is carried out. 

The correct expression for the vorticity w in this region, which turns out to have 
thickness O(u(x,)), is (see Robinson 1974 and Michalke 1964, figure 8 for temporally 
growing modes) 

where sAt is the linear instability-wave amplitude, 01 is its complex wavenumber and 
uco = c - 0  is the deviation of its complex phase speed from its neutral value of 
a. 

Expanding this equation in powers of r without accounting for the fact that y/ 
u = O(1) would clearly lead to an incorrect result. Thus a different (boundary-layer 
type) expansion has to be used in the region where y = O(u), which we refer to as the 
‘linear’ critical layer, or, following Robinson (1974)’ as the ‘growth’ critical layer. 

Since the instability wave continues to grow as the neutral condition a(xz) -t 0 is 
approached, a point where the amplitude e of the instability wave is O(a2(x,)) must 
eventually be reached. Nonlinear effects will then be of the same order as instability- 
wave growth effects, and the critical-layer flow will then be governed by an equation 
of the type derived by Stewartson (1978) for time-dependent Rossby-wave critical 
layers. 

Since the linear critical-layer expansion is a limiting form of this time-dependent, 
nonlinear critical-layer equation, the associated scaling u2(x2)  = O(s)  corresponds to 
a ‘distinguished limit’ for the ‘inner’ (nonlinear) expansion that matches onto the 
‘outer’ (linear) expansion on the x,-scale (where, as we have already indicated, the 
solution is uniformly valid in y and is given by the inviscid slowly varying 
approximation). The overlap domain corresponds to the linear critical-layer region 
indicated in figure 1, since the relevant flow can be found by re-expanding either the 
‘inner ’ (near-neutral) or the ‘outer’ (slowly diverging) solution. 

Viscous effects can still be neglected in the inner (near-neutral) region provided we 
assume, as we shall now do, that u3(x2) R = O ( s R )  B 1. In fact, we require that R 
satisfy the more stringent condition 

e2R% 1,  (2.11) 

so that viscous effects can be completely neglected in our analysis. 
We take the origin of the (x, x,)-coordinate system to be in this inner (near-neutral) 

region and let So now be the characteristic shear-layer thickness there (say twice the 
momentum thickness). 

t Note that ~(z, )  will be substantially constant over many shear-layer thicknesses and can 
therefore be treated as a constant for the present purposes. 
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FIGURE 1. Flow structure. 

3. Flow outside the critical layer 
First consider the flow in the ‘inner’ (near-neutral) region where E = O((r2(0)). 

Since the linear instability wave is near its neutral point and has wavelength O(So),  
our previous remarks suggest that the solution in the region y = 0(1) lying outside 
the critical layer will possess an expansion of the form 

$ = $o(y) + E$, + E&,+ + E ~ $ ~  + E:$: + o ( E ~ ) ,  (3.1) 

where the $nlz for n = 2 , 3 , 4 ,  and 5 are functions of & and y and the ‘slow ’ variables 
x1 and t ,  to be defined subsequently. 

Notice that $,(y) is a steady solution of the inviscid vorticity equation for any 
choice of the function $,. The latter is determined by the slow development of the 
mean flow on the long viscous scale x2 = x / R  and by the imposed upstream profile. 
We assume the latter to be such that 

(3.2) $o = In cosh y 

in the inner region, which closely corresponds to experimental observations and 
allows the analysis to  be carried out explicitly. 

The second term on the right-hand side of (3.1) represents the linear instability 
wave, which has an O(1) wavelength relative to the &-scale and is near its neutral 
state, which corresponds to a neutral Strouhal number 

so = O (3.3) 
for the profile (3.2). The small deviation, say E%’~, from this frequency, and the 
corresponding weak spatial amplification of the instability wave, can be accounted 
for by introducing the slow space and time variables 

and 

x 1 -  = 4 x  = d(<+ Ot), 

t ,  = €it 

in the laboratory (stationary) reference frame. 



Nonlinear roll-up of externally excited free shear layers 487 

There is no need to introduce even slower (e.g. E X )  scales as was done by Huerre 
(1980) since it is always possible to eliminate higher-order secularities in the present 
solution by exploiting arbitrarinesses in lower-order intermediate terms. 

Substituting the expansion (3.1) into (2.1)-(2.4) and equating linear terms in 6 to 
zero shows that 

9 0 $ 1 =  0, (3.6) 

(3.7) 
a 

where we have put Yo = (UV2- U”) - , 

with the primes denoting differentiation with respect to y, and 

U = U ( y )  = $A = tanhy 13.8) 

is the hyperbolic tangent mean velocity profile corresponding to the choice (3.2). 
Equation (3.6) possesses the solution 

$1 = sech y ReAt(zl) e’c, (3.9) 

where g~~-s , t ,=x- (o+€~s , ) t  (3.10) 

denotes the streamwise coordinate in a reference frame moving with the actual 
‘phase velocity ’ 

s = o + €is1 = so + €isl (3.11) 

of the mode (3.9), which differs from the average mean flow velocity 0 by the small 
amount &sl. 

The solution (3.9) clearly has harmonic time dependence with Strouhal number S 
in the laboratory reference frame, and can exhibit slow spatial growth through the 
‘slowly varying ’ amplitude function At(xl), which will ultimately be determined by 
the second- and the third-order problems. This term is of exponential form in the 
strictly linear case where the amplitude of the instability wave is small relative to E ,  

and (3.9) then becomes the familiar exponentially growing eigenfunction of linear 
stability theory. 

Our interest here is in time-periodic solutions of (2.1), and it is therefore 
appropriate to put 

m 

$rnlz = Re C @$i(y,x,) eimc for n = 3,4,  ... . (3.12) 

Then, since the slow time variable t ,  enters the solution only through 6, it follows 

(3.13) 

m-a 

from (3.10) that 

The equations for the first few $n,2 are 

9 o t l . S  = -91tl.1, (3.14) 

(3.15) 
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where the subscripts denote partial differentiation with respect to the indicated 
variables - the partial derivatives with respect to x1 being at constant t ,  and vice 
versa - and we have put 

(3.17) 

(3.18) 

and, like r2, rg involves no <-independent terms. 
Substituting (3.9) and (3.12) into (3.14) shows that @f’ is, a t  this stage, an 

arbitrary function of its arguments, and that @f), which accounts for the slow 
variation of the instability amplitude, satisfies Huerre’s (1980) equation (3.7) with 
h = 0, and is therefore given by his equation (3.11) with h = 0. We reproduce it here 
in our notation for completeness: 

Of)  = -i[(y sechy+sinhy) lnltanhyl-sechy;y,(tanhy)] 

dA+ 
dX1 

-i tanhy sinhy-+af) sechy+bfl)’(y sechy+sinhy) for y 2 0. (3.19) 

where 

af) and bf)’  are unknown functions of xl, and the superscripts + and - refer, 
respectively, to the regions y > 0 and y < 0 since, as shown below, @f) must have a 
discontinuous first derivative across the critical layer in order to match the 
boundary-layer solution in this region. 

As noted by Huerre (1980), @c) can only vanish at infinity if 

which leads to the following relation between the amplitude At of the first-order 
solution (3.9) and the second-order ‘jump’ across the critical layer : 

(3.20) 

It is therefore necessary to consider the flow in the critical layer in order to 
determine At.  It is well known (e.g. Benney & Maslowe 1975 ; Robinson 1974) that 
b/’)+ - 6;)- is equal to 

7c U--iX, At 
(-a:, 1 

for a linear critical layer - corresponding to a logarithmic phase jump of --x across 
that layer - so that 

where we have put (3.21) 
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We must therefore require that 

AT + a e-kKS1xl as x1 + - 00, (3.22) 

and it follows from (3.4) and (3.10) that &cl represents the first-order correction to 
the complex phase speed of the linear instability wave. 

Higher harmonics of the O( 8) s o h  tion satisfy the homogeneous equations 

L(")@p) = 0 for n = 2 ,3 ,4 ,  . .., (3.23) 

L(") = -- n2+-  for n = 1,2 ,3 ,  ..., (3.24) ( 3 
c 1 

where 

are the linear Rayleigh operators. Equations (3.23) possess the solution 

aY 

@p) = ui"'(xl) e-"lyl 1 +- tanh Iyl for n = 2,3,4,  ..., (3.25) 

which clearly decay exponentially as IyI + co but have discontinuous first derivatives 
across y = 0. Discontinuities in the @in) (n = 1,2,3,  . . .) themselves are precluded by 
the fact that solutions of the critical-layer vorticity equation cannot balance a 
transverse velocity jump a t  O($).  This implies continuity in pressure to the same 
order, as can be seen from the linearized streamwise momentum equation. The 
unknown ap) will ultimately be determined by the flow in the critical layer, but it 
is first necessary to consider higher-order terms in the expansion (3.1) before 
calculating that flow. 

Substituting (3.12) into (3.15), we find that the mean flow correction @Lo) is now an 
arbitrary function of its arguments, but the previously unknown mean flow 
correction @? must now satisfy 

in order to prevent the appearance of secular terms in t+h2. It is sufficient to take 

(3.26) 

and we shall eventually show that even this term must vanish. 
The fundamental harmonic @?) satisfies 

L(l)@(l) 2 = p( 2 Y , X l ) ,  (3.27) 

where FL1) is a complicated function of its arguments, which is written out in full in 
the Appendix. The higher harmonics satisfy 

U--inSl a J n ' + n 2 L  L(")@P) = &,,,(At sech2 Y ) ~ + -  ___ 
2 sech2y a 
in [ tanh y ( - ax., ) 

for n = 2 , 3 , 4 ,  ... . (3.28) 

Finally, we need to determine the unknown function @$". To this end we 
substitute (3.9), (3.12), and (3.19) into (3.16), to obtain Huerre's equation (3.17) with 
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h = 0, so @Lo) must satisfy his equation (3.19) with h = 0, which in the present 
notation becomes, upon neglecting an irrelevant function of y, 

(u+U)@lo,'-U'@Lo) = -&4t12 sech4y($+0 cothy)-P;,. (3.29) 

Integrating with respect to y yields 

Y sech3y 1 @Lo) = - (0 + tanh y) (. ']At]' [I?, c o s e C h y ( u + t a n h y - ~ ) d y  

1 
U 

+- In Jtanh (h)l - 0 In 

a p k  

(U+tanhy)2 dy - - } + ~ ~ a ' l ' [ ~ 2 - l - ( ~ + t a n h y ) z ] ,  0 (3.30) 

where the P;, denote O(c2) mean pressure variations above/below the shear layer 
(Huerre 1980). Pi,* must, of course, be set equal to zero when 0 = 1 .  

Before analysing the flow in the critical layer, it  is necessary to first determine the 
detailed asymptotic behaviour of the solution (3.1) in the neighbourhood of the origin 
y = 0. Fortunately, this can be done without obtaining complete solutions to the 
rather complicated equations (3.27) and (3.28) for the harmonics appearing in the 
O(e2)  solution. Thus, retaining only the dominant terms in (A l ) ,  (3.27) becomes 

L(')@il) = 2 sech3 y coth y coth y U--is, At [ (-a:l Y 
+ U--is, --i U - - 8  all)' +O(lny) as y+O. (3.31) ( -8:' )Elt (-a:l 1) 1 

It therefore follows from the method of variation of parameters that  

where the a?)' are arbitrary functions of x1 associated with the complementary 
solutions of (3.31). In  a similar way it follows from (3.28) that 

@?) =a?)'+O(yln]yl) asy-tO f o r n = 2 , 3 , 4 ,  .... (3.33) 

4. The critical layer 

critical layer. Introducing the scaled transverse coordinate 
We have already indicated that I&, is the appropriate transverse lengthscale in the 

YE7 Y 
€5 

into the solutions (3.2), (3.9), (3.19), (3.251, (3.26), (3.30), (3.32), and (3.33), inserting 
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these into the expansion (3.1), re-expanding the result for small E with Y = O(1) held 
fixed, and retaining terms up to O(E’), yields 

m 

e(iY2 +At e’c) +el x ac’ einc 
n-0 

and dy+& 
I , = O l m c o s e c h y ( -  sech3 y 

U+tanhy 0 (4.4) 

Equation (4.2) suggests that the critical-layer solution possess an expansion of the 
form 

Y = .Yo + 8Y1 + €2 In &Y2, + e2 y2 + d y3 + . . . , (4.5) 

where the Yn are functions of 5, Y and x1 only. 
Substituting this into (2.1)-(2.3), equating to zero coefficients of like powers of E ,  

noting the upstream boundary condition (2.10) and the matching condition (4.2), we 
find that the first few terms in the expansion are 

and 

Yo = iY2+ReAteic, 

= Re x ac) einc, 
m 

n=o 

E 

(4.7) 

Reinserting (4.5) into (2.1)-(2.3), equating coefficients of eg to zero, and using 
(3.13), and (4.6)-(4.8) now yields 

9(W0 = 0, (4.9) 

(4.10) 
- a  a a 

L F  = U -+ (Y-8,) -- Re (iAt eic) - 
ax1 af ay’  

where 

SZ, z YZy, + !Poe,e = YZy,  -Re At e’c, (4.11) 

and 1 + eSZ, + O ( d )  is the critical-layer vorticity. 
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The method of characteristics shows that this equation possesses the solution 

(4.12) 

where we have put A,(x,)  = At(xl) e-islzl'B, (4.13) 

and cS = &(x" I x,, Y, c) denotes the solution of the nonlinear characteristic equations 

(4.14) 

- dYs 
U (2)  = - Re iAo(2) e'cs(j'), (4.15) 

dx 

- dcs U--(Z) = Y&), 
dx" 

of (4.10), subject to the initial conditions 

(4.16) 

Equations (3.21) and (3.22) show that At, and hence A,, vanish exponentially fast 
as x1 + - co, since S, < 0 upstream of the linear neutral stability point. Integrating 
by parts in (4.12) and using (4.13) and (4.16) therefore shows that 

Q,=-Y2-2ReAte i~+&t ,  (4.17) 

S 
U 

cs = <+-2xl ,  Ys = Y at  P = xl. 

where we have put 

Equations (4.14)-(4.16) show that 

&t = 2 Re Ah(x") eics(*) dP. (4.18) 

S, (Z-x,)Y 
cs + 5+ = x1 + + (exponentially small terms in xl and 2)  as 2, x1 + - K I .  

U 
(4.19) 

Inserting this along with (3.21) and (3.22) into (4.13), (4.17), and (4.18), using the 
result in (4.11) and noting that Z < xl, now shows that 

YzYy = Q, - Yoa = - Y2 - R e ( 1+- ;?cJ a eic-hciz 1 + O(a2 e21cJs1) as x1 + - co , 

(4.20) 

which, in view of (3.4), (3.5), (3.10), (3.21), (3.22), (4.1), and (4.5), clearly agrees with 
the linear critical-layer solution (2.10). 

Integrating by parts in (4.18) (with respect to Cs) and using (3.21), (3.22), (4.13), 
(4.14), and (4.16) shows that 

Hence, using (4.14) and (4.15) to eliminate c' and again integrating by parts 
yields 
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where we have put 

Since (4.14)-(4.16) ensure that = O( Y) as Y + CO, these equations show that 

R,=O(YP3) asY+co.  (4.24) 

Inserting (4.22) into (4.11) via (4.17) and integrating the result once with respect 
Y now shows that !P2 matches the O(e2)-terms in (4.2) if 

m 

2 Re C ( b r ) + - b m ) - )  einc = 
n-1 

where the improper integral JZm Qt d Y  is defined in the usual way by 

M 

QtdY = lim QtdY. 
M t m  J - M  

It is now convenient to introduce the following normalized variables : 

Q = Qt/Si 0, 

A = 4At eiXo/0'S2,, 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

x = 5-x,, (4.29) 

(4.30) z=-l# 2 1 x 1 - xo, 

where 
1 (S1U)2 

x, = -In- 
K, 41ai 

(4.31) 

and X ,  = -KixO-arga. (4.32) 

Then it follows from (3.20)-(3.22), (4.9), (4.12), (4.17), (4.20), and (4.25) that  Q and 
A satisfy the scaled ' critical-layer vorticity equation ' : 

a a  a 
-++--Re(iAeiX)- 
az ax 37 

subject to the upstream boundary condition 

and 

1 KA eix 
&+-Re- 

A +eKz J 
along with the transverse jump condition 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

which uniquely determines A and Q. Notice that 0 is the only parameter remaining 
in the problem. 
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It follows from (4.3) and (4.25), along with (4.26)-(4.32), that once Q is found, the 
harmonic amplitudes can be calculated from 

and that Q itself must satisfy the condition 

1; JYm Qd'ldX = 0, 

which we show to be the case in the next section. 

(4.38) 

5. Numerical computation 

methods. Since Q is periodic in X ,  we expand it in a Fourier series 
The nonlinear evolution equations (4.33)-(4.36) must be solved by numerical 

with 

(where the asterisk denotes the complex conjugate) to obtain 

= Jn,,(iA+$U--), -dA for n = 0,1,2,3,  ..., 
d z  

(5.3) 

We solved (5.3)-(5.5) numerically, using a procedure similar to the one used by 
Haynes (1985). Rather than mapping the infinite domain - 00 < 7 < co into a finite 
region, Haynes simply solved his equation over a finite range, say -M < 7) < M ,  and 
used the asymptotic behaviour of Q as r,~ -t 00 to obtain an accurate approximation 
to the integral in (5.4). In  the present case it follows from (4.22), (4.24), and 
(4.26)-(4.29) that 

(5.6) d d  
+ O ( T - ~ )  asI7)l+co, 

and consequently that (5.4) can be approximated by 

(5.7) 

Equation (5.3) was integrated forward in Z beginning in the linear regime by a 
Hamming fourth-order predictor-corrector scheme (James, Smith & Wolford 1977) 
but with the inyQn term always treated implicitly (as described by Haynes 1985). 
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Equations (5.5) provided the upstream conditions needed to start the calculation. 
Sixty Fourier components were used in the computation, but, in order to minimize 
aliasing, only the first 50 were used to actually calculate the vorticity via (5.1). 

The transformation 
1 0 ~ 5  

(2014 + i74 
y = q +  

was introduced into (5.3)-(5.5) and the computations done on a uniform mesh in the 
7-coordinate. This concentrated the mesh points near y = 0 where a higher resolution 
was required. The derivatives with respect to V were replaced by a second-order 
central-difference formula, using the asymptotic expansion of Q to obtain values at 
the edges of the computational domain. Simpson’s rule was used to evaluate the 
integral in (5.7). 

We checked the calculated instability amplitude A with a completely independent 
computation based on the characteristic equations (4.14) and (4.15). The agreement 
was found to be excellent. 

Equation (4.38) is equivalent to 
00 

Qodq = 0. L 
But integrating (5.3) with n = 0 and using (5 .2)  and (5.6) shows that 

(5.9) 

and since Qo -+ 0 as Z+ - co this implies that (5.9), and consequently also (4.38), are 
indeed satisfied, 

Inserting (5.1) into (4.37) shows that the harmonic amplitudes in the outer flow are 
related to the critical-layer harmonic amplitudes Qn by 

(5.10) 

6. The change in mean flow 
Equation (4.38) (or equivalently (5.9)) shows that there is no jump in tangential 

mean flow velocity across the critical layer to O(e2). The jump in this quantity is 
O(cg), and integrating the relevant critical-layer vorticity equation shows that it is 
related to the jump in the O ( 2 )  stream function by 

This latter quantity can be found from the outer boundary condition (4.2). It can 
also be found from the critical-layer vorticity equation (4.9), or equivalently (5.3) 
with n = 0. Integrating this latter equation twice and using (5.21, (5.4), and (5.6) 
yields 

or, equivalently ŝ ; dy Q0(y’, E)  dy’ = +(AI2. 
-00 -m 
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It therefore follows from (4.2), (4.11), (4.17), (4.26)-(4.29), and (5.1) that 

1 
= U ~ ) ~ ( X , ) - U ~ ~ ) - ( ~ , ) - ~ ~ A ' ~  (I+-I-)  = -IAtI2. (6.3) U 

This determines the jump in the slowly varying functions aio)* that appear in the 

The jump in the pressure function P& is determined by the O ( 8 )  critical-layer 
O(e2) mean flow correction (3.30). 

vorticity equation. In fact it  follows from (3.30) and (4.5) that 

P;,m-P;,m-(ap+- (o)-)+&40~~(I+-I-)  = -- Y3yy dY dc. (6.4) 
a2 13", /: /:a 

Hence it follows from (6.1) and (6.3) that 

AP,, -m P;< -Pi ,  ro = 0. (6.5) 

Equations (3.1), (3.12), and (3.26) show that the change A$ in the mean stream 
function induced by the unsteady flow is 

T!.') is, a t  this stage, undetermined. It represents a simple displacement of the shear- 
layer centreline, since (6.6) can be combined with (3.8) to show that the mean shear- 
layer velocity, U ,  say, is given by 

a -  [ 
U ,  = 0 + U + - A @  = U+tanh y-t + 0 ( € 2 ) .  

a Y  

It is also worth noting that only the difference Pl, o3 -Pi, in the free-stream pressure 
variations (and not the individual pressures) is determined by the critical-layer flow 
(via (6.5)). 

But since (6.6) and (3.30) show that 

--tPIP:m(X1)y+function of (x,) as y+lfrco when 0 =/= 1,  (6.8) 

(6.9) 

0+1 3 
and A$+O as y+-co when 0 = 1,  

the inviscid free-stream velocities, say U;, V;,  induced by the mean shear-layer flow, 
must have expansions of the form 

u; = 17+1+s2uz(z1, y1)+0($), (6.10) 

vz = €"z(x,, yl) + O(€{) ,  (6.1 I)  

where we have put y1 = @y, (6.12) 

since, as indicated in figure 1,  the external potential flow must have equal streamwise 
and transverse lengthscales. 

1 
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Matching with (6.8) shows that 

u&(x,, 0) = -- p; 00 (6.13) 
U * l '  

(6.14) 

when U =I= 1, and 
ua,(xl, 0) = w;(x,, 0) = 0 when U = 1.  (6.15) 

But since u&,vz are harmonic conjugate functions, their boundary values are 
related by the Hilbert transforms 

(6.16) 

where the bar indicates that the Cauchy principal value is to be taken. It now follows 
from (6.13) and (6.14) that 

which can only be satisfied if 

Combining this with (6.5) shows that 

PEm = 0. 

af)(x,) = 0, 

U &  = a* 1 +O(& 

Hence, it follows from (6.13)-(6.16) that 

and 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

It is difficult to give a truly satisfactory definition of momentum thickness, say 0, 
for a shear layer, but it appears that the one often used by experimentalists (e.g. 
Oster & Wygnanski 1982) is 

0 ( U f , - U ; ) 2  = [U,-U;(x,,O)] [U+,(x,,O)-U,]dy. (6.21) 

Unfortunately, it is no longer possible to invoke a global conservation law to 
unambiguously relate this integral to shear-layer thickness, as can be done in the case 
of a boundary layer. Inserting (6.6), (6.7), (6.19), and (6.20) into the result shows 
that 

(6.22) 

But using (3.29) and (6.18) and integrating by parts shows that 

dy = ( U -  1) @')(00) - (U + 1 )  a?)( - 00) 

f m  

- U [ ~ ~ ' ) ( O + ) - ~ ~ ' ) ( O - ) ]  ++lA0J2J sech4 ydy. (6.23) 
-00 
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Inserting equation (3.30) and using (3.8), (4.4), (6.3), and (6.18) now shows that 

(6.24) 
4 0 - 2  - - 
- = F ( U )  g-_+- 
e21A*I2 u2 2 0  

On using (4.30), 
0-1 

-- - slA12(p)8F(D). (6.25) 

7. The composite expansion 
Excitation experiments suggest that overall instability-wave growth is strongly 

dependent on both weakly non-parallel flow effects (due to viscous-shear-layer 
growth) and nonlinear effects such as those considered herein. There have, 
consequently, been a number of attempts to incorporate both effects into a single 
theory (e.g. Plaschko & Hussain 1984; Cohen 1985; Wygnanski & Petersen 1987) but 
as pointed out by Huerre (1980), viscous-shear-layer growth eventually produces an 
order-one deviation from the neutral state that invalidates the small-growth-rate 
assumption of any of the current nonlinear theories. This is because the non-parallel 
and nonlinear theories have different (spatial) regions of validity and, in our view, 
the only completely rational (i.e. self-consistent) way of incorporating both effects 
into a single formula is through the use of a ‘ composite expansion ’ (Van Dyke 1975) 
formed from the present, ‘inner’ (near-neutral) solution, say $inner, and the slowly 
varying ‘outer’ solution, say $out, which, as pointed out in $2, can be obtained by 
the method of multiple scales (Crighton & Gaster 1976) and can be written as 

where denotes the spatially growing eigensolu tion of Rayleigh’s equation based 
on the local mean flow velocity a t  the streamwise position x2 and normalized so that 
CP::~(O, x 2 )  = 1,  a(%,) denotes the corresponding complex eigenvalue, x, is the 
streamwise location of the instability-wave source (usually the trailing edge of the 
splitter plate), and AOut(xz) is the slowly varying amplitude function determined by 
the elimination of secularity in an appropriate asymptotic expansion in powers of the 
slow divergence rate 1/R. 

We have, for the sake of concreteness, used a tanh mean velocity profile in our 
nonlinear analysis - though the principal results turn out to be nearly independent 
of the detailed profile shape. We suppose, therefore, for the sake of consistency, that 
the mean flow initial conditionst are adjusted to produce such a profile a t  the linear 
neutral stability point. However, the final formula ((7.9) below) should be more or 
less independent of the specific profile shape and should, therefore, apply for any 
starting flow. 

@~~l(y ,x2)+sechy as x,+O, 17.2) Then 

since the origin of the coordinate system is assumed to lie in the inner nonlinear 
region. And since the small-growth-rate linear analyses of Monkewitz & Huerre 
(1982) and Robinson (1974) show that 

(7.3) 

t These can always be found by integrating the boundary-layer equation backwards. 
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with our normalization, where K is defined by (3.21), it  follows from (3.11) that 

$oli = a sech y exp [ -isl K X ~ ]  exp{i[x- (u+ €isl) t ] }  as x2 + O ,  (7.4) 

where we have put (7.5) 

The inner solution $inner is given by (3.9). It therefore follows from (3.11) and 
(3.22) that 

$oli therefore represents the common expansion of the inner solution (3.9), say $inner, 

and $out in their mutual overlap domain 

(7.6) 

$inner + $o/i as * *  

e-i 4 x 4 R. 
Equations (3.9), (4.27), and (4.29)-(4.32) show that $inner can be written as 

$inner = uA e""o sech y exp {i[x- (0 + t ] } .  (7.7) 

Then (Van Dyke 1975) 
$camp $out $innerl$o/i 

is a uniformly valid composite expansion over the whole range of x and it follows 
from (7.1)' (7.4), (7 .7) ,  and (7.8) that 

where the nonlinear effects are now accounted for by the 'amplification factor' 
A e-"", which depends only on the average velocity ratio i7 and the shifted inner vari- 
able Z. 

It follows from (4.301, (4.311, (7.2), and (7.5) that the latter is related to the original 
(unshifted) streamwise variable x by 

(7.10) 

The argument of the logarithm is essentially the amplitude of the 'outer' (near- 
neutral) instability wave divided by the square of the deviation (see (2.9)) 

8, €isll = V(X2) = s-- 
80 

of the Strouhal number from the neutral Strouhal number So = 0. We can allow the 
coordinate-system origin shift to occur naturally by reinserting the slow x2 
dependence into this equation to obtain 

(7.11) 

which is of the same formal asymptotic order as (7.10) in the 'inner' (near-neutral) 
region (where A (Z) e-Kz differs from unity), but allows the linear instability-wave 
growth itself to set the origin, x = 0, of the x-coordinate system and therefore the 
location of the 'inner' region. 
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FIGURE 2. Scaled growth rate and wavenumber of ‘fundamental’ instability wave; 0 = 1.0. 

8. Numerical results and discussion 
Goldstein, Durbin & Leib (1987) found that nonlinear critical-layer effects increase 

the stability of adverse-pressure-gradient boundary layers in the sense that they 
reduce instability-wave growth rates below those of linear theory. Similar effects are 
found in the present study - the most interesting result being that nonlinear effects 
reduce the growth rate to zero in a very short streamwise distance. In figure 2 the 
scaled growth rate d In (Al/dx of the ‘outer’ (near-neutral) instability wave (3.9) (see 
also (4.27)) is plotted as a function of the scaled (and shifted) streamwise coordinate 
z for the case 0 = 1 ,  where the low-speed stream has no velocity. It shows that 
d In IA(/dzfollows the linear growth rate K,, until it  rapidly decreases when zis about 
two. It then continues to oscillate about zero with what appears to be slowly 
decreasing amplitude. While we were unable to carry the numerical solution far 
enough to determine its ultimate asymptotic state, the results strongly suggest 
that 

where yo, yl, and yz are real constants with yo 2 0. 
The related Rossby-wave critical-layer solution of Stewartson (1978) and Warn & 

Warn (1978) (referred to in $ 1 )  also exhibits this behaviour. The latter solution 
corresponds to the case where critical-layer-induced ‘outer ’ flow changes (in the 
R,ayleigh region) cannot react back on the velocity field that advects the critical- 
la,yer vorticity. Their critical-layer vorticity equation was then linear and could 
therefore be solved analytically (in fact it  was the same as our (4.33) with 
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A = - 1 and Q replaced by - Q). Stewartson and Warn & Warn calculated the time 
evolution of Rossby-wave absorbtivity, which corresponds to the usual logarithmic 
phase jump across the critical layer, as does our scaled growth rate d In IAl/dx. Their 
result, as reproduced in figure 1 of Killworth & McIntyre (1985), bears a remarkable 
resemblance to our figure 2. Killworth & McIntyre indicate that the oscillation 
amplitudes go to zero like (time)+ as time + 00,  which would correspond to yo = 2 in 
(8.1). Our results suggest that yo is smaller than this in the present case, but it is 
worth noting that the instability-wave amplitude IAl will approach a definite value 
far downstream in the flow as long as yo is strictly positive, and will continue to  
oscillate about a finite amplitude if yo = 0. I n  either case the scaling used by 
Robinson (1974), which assumes the instability-wave amplitude EAT to be large 
compared to  the Strouhal-number deviation v 2 ( x 2 )  (and consequently that A b 1)  is 
inappropriate even as an asymptotic limit of the present solution. 

Stewartson’s analytical solution also shows that the critical-layer vorticity itself 
does not tend to a steady-state limit, but continues to oscillate in the limit as 
(time) + co and appears to become increasingly dominated by the higher harmonics. 
He therefore concludes that even a small amount of viscosity will cause the critical 
layer to evolve into the Benney & Bergeron (1969) type, with constant ‘ cats-eyes ’ 
vorticity. Our feeling is that this still requires further verification. The present 
solution may not even tend to  a steady state in the region outside the critical layer 
if i t  turns out that yo is actually equal to zero. 

Also plotted in figure 2 is the scaled wavenumber perturbation as a function of E.  
It also follows the linear value K~ until it begins to oscillate a t  the value of z for which 
the growth rate first goes to zero. 

Figure 3 is a plot of the scaled instability-wave amplitude corresponding to the 
scaled growth rate plotted in figure 2. It shows the sudden deviation from linear 
growth in an even more dramatic fashion. The amplitude oscillations imply periodic 
reversal of energy transfer between the fluctuations and the mean flow, and possibly 
between the fluctuations themselves. By considering the Reynolds-stress changes 
that occur with nutating elliptic vortices, Browand & Ho (1983) came up with a 
simple kinematic explanation for this phenomenon. The reader is referred to Ho & 
Huerre (1984, p. 410) for details. Similar behaviour can be observed in the 
calculations of Benney & Maslowe (1975), Huerre (1977), and Miura & Sato 
(1978). 

Figure 4 is a plot of the first few scaled harmonic amplitudes Iac’l/S; U 2 ,  as 
calculated from (5.9). The figure shows that, while all outer-flow higher harmonics 
are generated by critical-layer nonlinearity, only the first (n  = 2) harmonic has 
significant amplitude there. 

Figures 5-7 are the analogues to  2 4 ,  but are for the case where the scaled average 
velocity 0 is equal to three. They are similar to  the previous figures, but the 
variations are now spread over much longer streamwise distances. Also, the scaled 
fundamental instability amplitude IAl has a much smaller maximum value - about 
0.2 as opposed to 7.5 - and the initial amplitudes of the downstream oscillations of 
IAl are now significant fractions of its maximum value. 

Figure 8 is a plot of the scaled momentum thickness change (@-i)/i(&S‘J0)4, as 
given by (6.25), for the case = 3.0. It increases fairly gradually on the fast ‘inner’ 
scale X, until it reaches a maximum value of about 14.5 at an X of about -9 and then 
very suddenly levels off and begins to  decrease - because IAl decreases. This variation 
in 0 would appear to be even more sudden when plotted against the slow outer 
variable x2 on which the initial viscous-shear-layer growth takes place. This is 
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consistent with the sudden change in shear-layer growth that was found to occur just 
upstream of the neutral stability point by Ho & Huang (1982). The quantity (&S,/O) 
in the denominator of (6.45) is the deviation of the frequency from the neutral 
frequency, divided by the neutral frequency a t  the position where nonlinear effects 
become important. We estimate that it should be about 8 in the Ho & Huang 
experiment, so that (6.45) suggests that (instability-wave-induced shear-layer 
growth minus the viscous-shear-layer growth)/viscous-shear-layer growth x 0.9, 
which appears to be consistent with Ho & Huang’s observation for their case I. We 
expect that the large decrease in 0-$ beyond its maximum will be considerably 
reduced when a small amount of viscosity is included in the calculation. 

Figure 9 is a plot of the constant-vorticity lines in the (X,r)-plane a t  various 
values of X, for U = 1. This figure shows that the vorticity exhibits the expected roll- 
up with downstream distance. The reader should note the especially strong braid 
that forms a t  z =  2.5 and that roll-up occurs in the present analysis without 
significant mean flow divergence (Wygnanski & Petersen 1987, p. 206). 

Standard computer routines for plotting contour lines tend to represent long, thin 
closed contours by series of small islands (as previously pointed out by Corcos & 
Sherman (1976), for example). The appearance of these islands in the Q,, = 0 contour 
is probably attributable to this limitation, but some of the contour irregularity at the 
larger values of x is probably due to the inability of the numerical scheme to resolve 
small-scale details of the vorticity field. 

For comparison we included figure 10 to show the downstream evolution of the 
vorticity contours predicted by the linear growth solution (4.20). It shows that the 
initial shearing of the constant-vorticity lines is well described by the linear theory 
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but the subsequent roll-up is not. This is, of course, to be expected, because the linear 
theory is invalid when the slope of the constant vorticity lines is large. 

Figure 1 1  shows the nonlinear roll-up for the case where 0 = 3. It is somewhat 
similar to the roll-up shown in figure 9, but takes place more gradually. Notice that 
the lateral extent of the disturbed contours is smaller in this case. Also, the 52, = 0 
contour appears to behave somewhat differently in the two cases. 
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Drs L. S. Hultgren and P. A. Durbin for suggesting improvements in the manuscript 
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Appendix 
The inhomogeneous term on the right-hand side of (3.27) is 

F p )  = 2{sech3 y coth y- (y sech y+ sinh y) In ltanh yI 
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